
Supplementary Notes

1 Statistics of connectivity in networks storing

fixed-point attractors

To compute the distribution of synaptic weights, we first note that the problem of
learning p patterns in an attractor neural network is equivalent to N perceptron
problems. Each neuron i has to learn p associations between the states of its
inputs in pattern µ (ηµj , j 6= i), and its state in that pattern ηµi . Thus, the distri-
bution of synaptic weights in an attractor network is identical to the distribution
in a perceptron, in which the output coding level is equal to the input coding level.
The distribution of synaptic weights in a perceptron with excitatory weights has
been calculated by Kohler and Widmaier (1991, J. Phys. A 24, L495-L502) and
Brunel et al (2004) 32 (see also refs33,31,42 for generalizations of such calculations).
Here, for the sake of completeness we describe below the calculation using the
replica method. We also derive the distribution using another, more transpar-
ent, method: the cavity method29 (Mézard (1989) J. Phys. A 22, 2181-2190),
which gives a more intuitive understanding of the results. Furthermore, the cav-
ity method allows us to compute joint distributions of sets of synaptic weights
(section 1.2.3).

1.1 The replica method

The approach introduced by Gardner26 (see also Shcherbina and Tirozzi (2003)
Commun. Math. Phys. 234, 383-422) consists in computing the typical volume
of the space of solutions to the learning problem. The capacity is then obtained as
the value of p for which the volume vanishes. Distributions of relevant quantities
(stabilities, weights) are averaged over the space of solutions.

We focus here on the space of weights of one particular neuron, k. The
synaptic weights connecting other neurons in the network to neuron k are wi ≡
wki. In the large N limit, wij ∼ O(1) leads to T = O(N) and K = O(

√
N). We

therefore rescale T = Nθ, K =
√
Nκ where θ and κ are of order 1 in the large

N limit.
To compute the typical volume of the space of weights that satisfy learning

of all p patterns for this particular neuron, one needs to compute the average of
the logarithm of the volume over the distribution of patterns26. In practice, the
calculation of this average is done using the replica method. One first computes
the volume of n replicas of the system,

V n =
∫

dw
∏

µ,a

Θ(∆µa − κ),
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where ∆µa is the stability of pattern µ for neuron k in replica a,

∆µa =
ξµ√
N

(

∑

i

wa
i η

µ
i −Nθ

)

where ξµ = ξµk , and wa
i is the synaptic weight from neuron k to neuron i in replica

a.
Averaging over patterns,

〈V n〉 =
∫

dw〈
∏

µ,a

Θ(∆µa − κ)〉,

and taking the limit n → 0, one eventually obtains the desired quantity,

〈log V 〉 = lim
n→0

(〈V n〉 − 1)/n. (1)

The averaging over patterns is performed using integral representations for
the Heaviside functions,

Θ(∆µa − κ) =
∫

dxµa
∫ ∞

κ
dyµa exp(ixµa(yµa −∆µa)),

which gives

〈V n〉 =
∫

dwdxdy exp





∑

µ,a

ixµa



yµa +
√
Nθξµ − f√

N

∑

j

wa
j





−f(1− f)

2N

∑

µ

(

∑

a

wa
jx

µa

)2


 (2)

The next step is to introduce order parameters,

1

N

∑

j

wa
j =

θ

f
+

Ma

√
N

≡ w +
Ma

√
N

(3)

1

N

∑

j

(

wa
j

)2
= Qa (4)

1

N

∑

j

wa
jw

b
j = qab, (5)

together with conjugate parameters M̂a, Q̂a and q̂ab. The following steps are to
use a replica-symmetric ansatz, and perform the limit n → 0. This leads to

〈V n〉 =
∫

d . . . exp(NnF ) (6)

F = −Q̂Q+
1

2
q̂q + wM̂

+
∫ +∞

−∞
Du log

∫ ∞

0
dw exp

[

(Q̂− q̂

2
)w2 + w(u

√

q̂ − M̂)

]

+α
∑

ξ=±1

pξ

∫ +∞

−∞
Du logH





κ− ξfM + u
√

qf(1− f)
√

f(1− f)(Q− q)



 (7)
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where Du = du exp(−u2/2)/
√
2π and H(x) =

∫∞
x Du.

In the large N limit, the integral in Eq. (6) is dominated by the saddle point,
given by the equations

w =
∫ +∞

−∞
Du

∫∞
0 dww exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

]

∫∞
0 dw exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

] (8)

Q =
∫ +∞

−∞
Du

∫∞
0 dww2 exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

]

∫∞
0 dw exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

] (9)

q =
∫ +∞

−∞
Du

∫∞
0 dw(w2 − wu/

√
q̂) exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

]

∫∞
0 dw exp

[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

] (10)

0 =
∑

ξ

pξξ
∫

Du
G(aξ(u))

H(aξ(u))
(11)

Q̂ =
α

2

∑

ξ

pξ

∫

Du
aξ(u)

(Q− q)

G(aξ(u))

H(aξ(u))
(12)

q̂ = α
∑

ξ

pξ

∫

Du





u
√

q(Q− q)
+

aξ(u)

(Q− q)





G(aξ(u))

H(aξ(u))
(13)

aξ(u) =

√

q

Q− q
(u− τξ) (14)

τξ = − κ− ξfM
√

qf(1− f)
(15)

where G(x) = exp(−x2/2)/
√
2π.

At maximal capacity, α = αc, q → Q. In that limit, we rewrite

2Q̂ ∼ q̂ ∼ C

(Q− q)2
(16)

q̂ − 2Q̂ ∼ A

Q− q
(17)

M̂ ∼ B
√
C

Q− q
. (18)

Saddle point equations give in that limit

w =

√
C

A
(G(B)− BH(B)) (19)

Q =
C

A2

(

(1 + B2)H(B)−BG(B)
)

(20)

A = H(B) (21)
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0 =
∑

ξ

pξξ (G(τξ)− τξH(τξ)) (22)

C = αcQ
∑

ξ

pξ
(

(1 + τ 2ξ )H(τξ)− τξG(τξ)
)

(23)

A = αc

∑

ξ

pξH(τξ) (24)

These equations can be solved as follows. For a given

κ̃ = κ/
√

Qf(1− f),

we obtain M̃ = M/
√

Qf(1− f) by solving Eq. (22). This gives us the τξs. Then,
we can obtain B through the relationship

(1 + B2)H(B)−BG(B)

H(B)
=

∑

ξ pξH(τξ)
∑

ξ pξ
(

(1 + τ 2ξ )H(τξ)− τξG(τξ)
) (25)

obtained from combining Eqs. (20,21,23). Since we already know w = θ/f , we
can now compute all other parameters Q, A, C, and αc. In particular, for κ = 0,
f = 0.5, we get M = 0, B = 0, A = 0.5, and recover the well-known result αc = 1
(Amit et al (1989), J. Phys. A 22, 4687-4693).

The replica method can also be used to compute the distribution of stabilities
(Kepler and Abbott (1988), J. Phys. France 49 1657-1662) and the distribution
of weights (Kohler and Widmaier (1991), J. Phys. A, 24, L495-L502)32. The
distribution of stabilities is given at maximal capacity by

P (∆) =
∑

ξ

pξ









G
(

∆−ξfM√
f(1−f)Q

)

√

f(1− f)Q
Θ(∆−K) +H(τξ)δ(∆−K)









(26)

Note that the fraction of saturated constraints is
∑

ξ pξH(τξ).
The distribution of weights is

Q(w) = Θ(w)
∫ +∞

−∞
Du

exp
[

(Q̂− q̂

2
)w2 + w(u

√
q̂ − M̂)

]

∫+∞
0 dw′ exp

[

(Q̂− q̂

2
)w′2 + w′(u

√
q̂ − M̂)

] (27)

At maximal capacity the distribution becomes

Qc(w) = H(−B)δ(w) +
1√
2πws

exp

[

− 1

2w2
s

(w + Bws)
2

]

Θ(w) (28)

where

ws =

√
C

A
=

w

G(B)−BH(B)
(29)
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Note that the fraction of zero weight synapses is H(−B); while the fraction of
strictly positive synapses (in other words, the connection probability) is H(B).
Interestingly, the fraction of strictly positive synapses is related to the fraction
of saturated constraints through the relationship

H(B) = α
∑

ξ

pξH(τξ)

In other words, the number of strictly positive synapses is equal to the number
of saturated constraints1.

Note that the distribution of weights can be computed both below capacity
(for α < αc), using Eq. (27) where Q̂, q̂, M̂ are obtained solving numerically
Eqs. (8-13), and at maximal capacity (for α = αc), using Eq. (28) where B and
ws are obtained as outlined above 32. How the distribution changes as a function
of storage capacity is illustrated in Supplementary Figure 1.

1.2 The cavity method

The cavity method was introduced by physicists working on disordered systems
as an alternative, more transparent method than the replica method29. It has
been applied to a wide range of problems, including combinatorial optimization
problems. In the following we apply the cavity method to our network, along
the lines of Mézard’s calculation for the unconstrained perceptron (Mézard 1989,
J. Phys. A 22, 2181-2190). The calculation proceeds in two steps: we first in-
troduce a new pattern, and compute the distribution of stabilities for this new
pattern; then, we introduce a new weight, and compute the distribution of this
weight. The calculation will then be generalized to joint distributions of pairs of
weights.

1.2.1 Distribution of stabilities

We assume that a network of N neurons has already learned p patterns. We
add a new randomly drawn pattern (~η) to the set of patterns to be learned.
We focus on one particular neuron k and define for convenience ξ = 2ηk − 1,
pξ = fξ + (1− ξ)/2. Its associated stability is

∆ =
ξ√
N

(

∑

i

wiηi −Nθ

)

(30)

where wi is the weight from neuron i to k.
We rewrite Eq. (30) as

∆ =
ξ√
N

(

∑

i

wi(ηi − f)−
[

Nθ − f
∑

i

wi

])

1I am indebted to Peter Dayan for this observation.
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We first consider the distribution of ∆ over the space of weights satisfying the
previous p constraints. This distribution is a Gaussian, with mean

h =
ξ√
N

∑

i

〈wi〉 (ηi − f) + ξfM (31)

where 〈.〉 denotes ‘thermal’ averages, i.e. averages over the allowed space of
weights, and we have introduced f

√
NM = f

∑

i 〈wi〉 −Nθ.
Its variance is

σ2
h =

1

N

[

∑

i

(〈

w2
i

〉

− 〈wi〉2
) (

ηi(1− 2f) + f 2
)

]

Learning this pattern consists in removing from the space of weights those
weights leading to a stability lower than κ. Therefore, the distribution of stabil-
ities after learning is a truncated Gaussian,

P (∆, h) =
1

σh

G
(

∆−h
σh

)

H
(

κ−h
σh

)Θ(∆− κ). (32)

where G(x) = exp(−x2/2)/
√
2π, H(x) =

∫∞
x G(u)du.

The next step is to average over the distribution of patterns. These averages
are denoted by X. The first two moments of h and the average of σ2

h are:

h = ξfM (33)
(

h− h
)2

=
f(1− f)

N

∑

i

〈wi〉2 (34)

σ2
h =

f(1− f)

N

∑

i

〈w2
i 〉 − 〈wi〉2 (35)

To simplify these expressions we introduce the order parameters

1

N

∑

i

〈w2
i 〉 = Q (36)

1

N

∑

i

〈wi〉2 = q (37)

where for obvious reasons we use the same notations as in the replica method.
Using these order parameters, we obtain

(h− ξfM)2 = qf(1− f) (38)

σ2
h = f(1− f)(Q− q) (39)

h is distributed as a Gaussian with mean ξfM and variance qf(1−f), while σ2
h has

a mean f(1−f)(Q−q) with a variance that goes to zero in the thermodynamical
limit.
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Using the above results, we can write the sample-averaged distribution of
stabilities as

P (∆) =
∑

ξ=±1

pξ

∫ dh
√

2πqf(1− f)
G





h− ξfM
√

qf(1− f)



P (∆, h) (40)

which coincides with the expression obtained using the replica method. At max-
imal capacity, the space of available synaptic connectivities shrinks to a single
point, and consequently q → Q. To obtain the distribution at maximal capacity,
we thus take the limit q → Q. In this limit, σh goes to zero. Therefore, P (∆, h)
becomes a delta function which is either peaked on h if h > κ, or on κ if h < κ.
This leads to the distribution of stabilities obtained using the replica method,
Eq. (26). Intuitively, the truncated Gaussian corresponds to those patterns that
do not need any synaptic change to be learned, while the delta function in κ
corresponds to those patterns that needed synaptic change to be learned.

1.2.2 Distribution of synaptic weights

We next turn to the distribution of synaptic weights. We add a single neuron,
i = 0, with its associated weight w0, to the set of neurons that send inputs to
neuron k. The values of the patterns for this new neuron are ηµ0 , µ = 1, . . . , p.
This changes slightly the stability of each of the patterns: ∆µ → ∆µ + ǫµ where

ǫµ =
ξµ√
N
w0(η

µ
0 − f)

Assuming the joint distribution of stabilities approximately factorizes in the prod-
uct of the distributions of individual stabilities (Mézard (1989) J. Phys. A 22
2191-2190), the distribution of weights w0 satisfying all the p constraints, aver-
aged over the space of all the other couplings, is

Q(w0) ∝
∫

∏

µ

P (∆µ, hµ)d∆µΘ(∆µ + ǫµ − κ)Θ(w0) exp(−cw0)

where P (∆µ, hµ) is given by Eq. (32), in which hµ is given by Eq. (31), replacing
(ξ, ηi) by (ξµ, ηµi ), and Θ(w0) exp(−cw0) is a prior distribution which enforces the
constraint w > 0, and c is a constant that will be determined self-consistently in
the following. Expanding the r.h.s. in ǫ gives

Q(w0) ∝ exp

(

(a− c)w0 −
b

2
w2

0

)

Θ(w0)

where

a =
1√
N

∑

µ

ξµ(ηµ0 − f)P (κ, hµ) (41)

b =
1

N

∑

µ

(

ηµ0 (1− 2f) + f 2
)

(

P (κ, hµ)2 +
∂P

∂∆
(κ, hµ)

)

(42)
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Hence, we get again a truncated Gaussian. a and b depend in particular on
the properties of the distribution of stabilities at κ, which makes sense: only the
patterns whose stability is close to κ constrain the choice of w0. The sign of a also
tells us whether the weight would tend to be positive or negative in absence of
the constraint: inspecting the r.h.s. of Eq. (41), we see that the more associations
leading to positive output in which this synapse is activated, the more positive
it will tend to be, as one would expect.

Let us now compute the statistics of a and b over the distribution of patterns.
a is a Gaussian random variable with zero mean and variance σ2

a, while b becomes
in the thermodynamical limit equal to its average value b. Using Eq. (32), writing

hµ = ξµfM − u
√

qf(1− f) where u is a Gaussian variable with zero mean and
unit variance, and replacing

∑

µ by αN
∑

ξ pξ
∫

Du leads to

σ2
a = αf(1− f)

∑

ξ

pξ

∫

Du
1

σ2
h

G (aξ(u))
2

H (aξ(u))
2 (43)

b = αf(1− f)
∑

ξ

pξ

∫

Du
1

σ2
h

G (aξ(u))
2

H (aξ(u))
2 − aξ(u)

σ2
h

G (aξ(u))

H (aξ(u))
(44)

aξ(u) =
κ− ξfM + u

√

qf(1− f)
√

f(1− f)(Q− q)
(45)

The averaged distribution of weights is

Q(w0) =
∫

Du
exp

(

− b
2
w2

0 + w0 (−c+ uσa)
)

Θ(w0)
∫+∞
0 dw exp

(

− b
2
w2 + w (−c+ uσa)

) (46)

i.e. the same equation as Eq. (27), provided we have

b = q̂ − 2Q̂ ∼ A

Q− q
(47)

c = M̂ ∼ B
√
C

Q− q
(48)

σ2
a = q̂ ∼ C

(Q− q)2
(49)

In the q → Q limit, Eqs. (43,44) become

C = αQ
∑

ξ

pξ
(

(1 + τ 2ξ )H(τξ)− τξG(τξ)
)

(50)

A = α
∑

ξ

pξH(τξ) (51)

where τξ is given by Eq. (15). These are the same equations as those obtained
using the replica method, Eqs. (24,23).
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1.2.3 Joint distributions of synaptic weights

The cavity method can be used to compute the joint distribution of arbitrary
n-tuples of weights. We focus here on the simplest case of the distribution of
pairs of weights.

We consider a pair of neurons, i and j, and add a new pair of weights wij and
wji to the network. These weights will change slightly the stability of each of the
patterns at the corresponding sites, ∆µ

i → ∆µ
i + ǫµij , ∆

µ
j → ∆µ

j + ǫµji where

ǫµij =
ξµi√
N
wij(η

µ
j − f) (52)

ǫµji =
ξµj√
N
wji(η

µ
i − f) (53)

Assuming again that the joint distribution of stabilities approximately factorizes
in the product of the distributions of individual stabilities, the joint distribution
of weights satisfying all the p constraints, averaged over the space of all the other
couplings, is

Q(wij, wji) ∝
∫

∏

µ,k=i,j

P (∆µ
k , h

µ
k)d∆

µ
kΘ(∆µ

k + ǫkk′ − κ)Θ(wkk′) exp(−cwkk′)

where k′ = j if k = i, while k′ = i if k = j, P (∆µ
k , h

µ
k) is given by Eq. (32),

in which hµ
k is given by Eq. (31), replacing (ξ, ηi) by (ξµk , η

µ
k′). Expanding the

r.h.s. in ǫ gives

Q(wij, wji) ∝ exp

(

(aij − c)wij + (aji − c)wji −
bij
2
w2

ij −
bji
2
w2

ji

)

Θ(wij)Θ(wji)

where

aij =
1√
N

∑

µ

ξµi (η
µ
j − f)P (κ, hµ

i ) (54)

aji =
1√
N

∑

µ

ξµj (η
µ
i − f)P (κ, hµ

j ) (55)

bij =
1

N

∑

µ

(

ηµj (1− 2f) + f 2
)

(

P (κ, hµ
i )

2 +
∂P

∂∆
(κ, hµ

i )

)

(56)

bji =
1

N

∑

µ

(

ηµi (1− 2f) + f 2
)

(

P (κ, hµ
j )

2 +
∂P

∂∆
(κ, hµ

j )

)

(57)

We can now compute the statistics of aij, aji, bij and bji over the distribution
of patterns. The means and variances have already been computed in the previous
section, Eqs. (43,44). The covariance of aij and aji is

aijaji =
α

4





∑

ξ

pξ

∫

Du
1

σh

G (aξ(u))

H (aξ(u))





2

(58)

9

Nature Neuroscience: doi:10.1038/nn.4286



The joint distribution of wij and wji is

Q(wij, wji) =
∫

∏

a={ij},{ji}
duaP (uij, uji)

exp
(

∑

a − b
2
w2

a + wa (−c+ uaσa)
)

∏

a Θ(wa)
∏

a

∫∞
0 dwa exp

(

− b
2
w2

a + wa (−c+ uaσa)
)(59)

P (uij, uji) =
1

2π
√
1− λ2

exp

(

− 1

2(1− λ2)

(

u2
ij + u2

ji − 2λuijuji

)

)

(60)

λ =

(

∑

ξ pξ
∫

Du
G(aξ(u))
H(aξ(u))

)2

4f(1− f)
∑

ξ pξ
∫

Du
G(aξ(u))

2

H(aξ(u))
2

(61)

In the limit α → αc, q → Q, we get

Q(wij, wji) =
∫

DzH

(

−B + z
√
λ√

1− λ

)

δ(wij)δ(wji)

+
1√
2πws

exp
(

−1

2

(

B +
wji

ws

))

H



−
√

1− λ

1 + λ
B

+
λ√

1− λ2

wji

ws

)

δ(wij)Θ(wji)

+(i ↔ j)

+
1

2π
√
1− λ2

exp

(

− 1

2(1− λ2)

(

[

B +
wij

ws

]2

+
[

B +
wji

ws

]2

−2λ
[

B +
wij

ws

] [

B +
wji

ws

]))

Θ(wij)Θ(wji) (62)

λ =

(

∑

ξ pξξ (G(τξ)− τξH(τξ))
)2

4f(1− f)
∑

ξ pξ
(

(1 + τ 2ξ )H(τξ)− τξG(τξ)
) (63)

From the above equation one can compute the probabilities of the three 2-
neuron motifs,

p00 =
∫

DzH

(

−B + z
√
λ√

1− λ

)2

(64)

p10 = 2
∫

DzH

(

−B + z
√
λ√

1− λ

)

H

(

B − z
√
λ√

1− λ

)

(65)

p11 =
∫

DzH

(

B − z
√
λ√

1− λ

)2

(66)

as well as the distribution of weights for bidirectionnally or unidirectionnally
coupled pairs,

Q10(w) =
H
(

−
√

1−λ
1+λ

B + λ√
1−λ2

w
ws

)

H(−B)
Q(w) (67)
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Q11(w) =
H
(√

1−λ
1+λ

B − λ√
1−λ2

w
ws

)

H(−B)
Q(w) (68)

2 Statistics of connectivity in networks storing

sequences

In networks storing sequences, we now define ∆µ
i as the stability of the transition

from pattern µ to pattern µ+ 1 at neuron i,

∆µ
i =

ξµ+1
i√
N

(

∑

i

wiη
µ
i −Nθ

)

where for convenience ξµ+1
i = 2ηµ+1

i − 1. The full sequence is learned if and only
if

∆µ
i ≥ κ (69)

for all i, µ.
The calculation of the statistics of connectivity proceeds as in the case of fixed

point attractors. The distribution of synaptic weights ends up being identical to
the case of fixed point attractors. On the other hand, the joint distribution of
weights of a pair of neurons is different in the case of sequences. It is given by

Q(wij, wji) ∝ exp

(

(aij − c)wij + (aji − c)wji −
bij
2
w2

ij −
bji
2
w2

ji

)

Θ(wij)Θ(wji)

where

aij =
1√
N

∑

µ

ξµ+1
i (ηµj − f)P (κ, hµ

i ) (70)

aji =
1√
N

∑

µ

ξµ+1
j (ηµi − f)P (κ, hµ

j ) (71)

bij =
1

N

∑

µ

(

ηµj (1− 2f) + f 2
)

(

P (κ, hµ
i )

2 +
∂P

∂∆
(κ, hµ

i )

)

(72)

bji =
1

N

∑

µ

(

ηµi (1− 2f) + f 2
)

(

P (κ, hµ
j )

2 +
∂P

∂∆
(κ, hµ

j )

)

(73)

The difference with the fixed point scenario is that ξµ+1
i , ξµ+1

j enters in the sums
over patterns in the r.h.s. of Eqs. (70,71), instead of ξµi , ξ

µ
j in Eqs. (54,55). As

a consequence, aijaji = 0, the distribution of weights factorizes, and as a result
there is no overrepresentation of bidirectionnally connected pairs.
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Figure S1: Distribution of weights vs storage capacity. The distribution is shown
in semi-log plot for f = 0.25 and ρ = 2.1, for various values of α = 0 (dotted -
in this limit, the distribution is exponential), 0.5αc (dashed), 0.8αc (dot-dashed)
0.9αc (thin solid), αc (thick solid).
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Figure S2: Fraction of neurons storing all patterns correctly, as a function of
α = p/N , for different network sizes, and two values of the robustness parameters.
The analytical prediction for the storage capacity is shown by the dotted line.
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Figure S3: Finite-size effects. (a). Connection probability as a function of 1/N
for ρ = 0 (black), 2 (red), 4 (green), 6 (blue), and f = 0.5. horizontal lines are
analytical predictions for the large N limit, filled circles are results of simulations.
(b). Probability of observing bidirectionnally connected pairs relative to random
networks, as a function of 1/N , for f = 0.5, ρ = 4.
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